各位用户为了找寻关于使用OpenCV去除面积较小的连通域的资料费劲了很多周折。这里教程网为您整理了关于使用OpenCV去除面积较小的连通域的相关资料,仅供查阅,以下为您介绍关于使用OpenCV去除面积较小的连通域的详细内容

这是后期补充的部分,和前期的代码不太一样

效果图

源代码

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 //测试 void CCutImageVS2013Dlg::OnBnClickedTestButton1() {     vector<vector<Point> > contours;  //轮廓数组     vector<Point2d> centers;    //轮廓质心坐标     vector<vector<Point> >::iterator itr; //轮廓迭代器     vector<Point2d>::iterator itrc;  //质心坐标迭代器     vector<vector<Point> > con;   //当前轮廓       double area;     double minarea = 1000;     double maxarea = 0;     Moments mom;       // 轮廓矩     Mat image, gray, edge, dst;     image = imread("D:66.png");     cvtColor(image, gray, COLOR_BGR2GRAY);     Mat rgbImg(gray.size(), CV_8UC3); //创建三通道图     blur(gray, edge, Size(3, 3));       //模糊去噪     threshold(edge, edge, 200, 255, THRESH_BINARY_INV); //二值化处理,黑底白字     //--------去除较小轮廓,并寻找最大轮廓--------------------------     findContours(edge, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE); //寻找轮廓     itr = contours.begin();    //使用迭代器去除噪声轮廓     while (itr != contours.end())     {         area = contourArea(*itr);  //获得轮廓面积         if (area<minarea)    //删除较小面积的轮廓         {             itr = contours.erase(itr); //itr一旦erase,需要重新赋值         }         else         {             itr++;         }         if (area>maxarea)    //寻找最大轮廓         {             maxarea = area;         }     }     dst = Mat::zeros(image.rows, image.cols, CV_8UC3);     /*绘制连通区域轮廓,计算质心坐标*/     Point2d center;     itr = contours.begin();     while (itr != contours.end())     {         area = contourArea(*itr);               con.push_back(*itr);   //获取当前轮廓         if (area == maxarea)         {             vector<Rect> boundRect(1); //定义外接矩形集合             boundRect[0] = boundingRect(Mat(*itr));             cvtColor(gray, rgbImg, COLOR_GRAY2BGR);             Rect select;             select.x = boundRect[0].x;             select.y = boundRect[0].y;             select.width = boundRect[0].width;             select.height = boundRect[0].height;             rectangle(rgbImg, select, Scalar(0, 255, 0), 3, 2); //用矩形画矩形窗             drawContours(dst, con, -1, Scalar(0, 0, 255), 2); //最大面积红色绘制         }         else             drawContours(dst, con, -1, Scalar(255, 0, 0), 2); //其它面积蓝色绘制         con.pop_back();         //计算质心         mom = moments(*itr);         center.x = (int)(mom.m10 / mom.m00);         center.y = (int)(mom.m01 / mom.m00);         centers.push_back(center);         itr++;     }     imshow("rgbImg", rgbImg);     //imshow("gray", gray);     //imshow("edge", edge);     imshow("origin", image);     imshow("connected_region", dst);     waitKey(0);     return; }

前期做的,方法可能不太一样

一,先看效果图

原图

处理前后图

二,实现源代码

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 //=======函数实现===================================================================== void RemoveSmallRegion(Mat &Src, Mat &Dst, int AreaLimit, int CheckMode, int NeihborMode) {     int RemoveCount = 0;     //新建一幅标签图像初始化为0像素点,为了记录每个像素点检验状态的标签,0代表未检查,1代表正在检查,2代表检查不合格(需要反转颜色),3代表检查合格或不需检查     //初始化的图像全部为0,未检查     Mat PointLabel = Mat::zeros(Src.size(), CV_8UC1);     if (CheckMode == 1)//去除小连通区域的白色点     {         //cout << "去除小连通域.";         for (int i = 0; i < Src.rows; i++)         {             for (int j = 0; j < Src.cols; j++)             {                 if (Src.at<uchar>(i, j) < 10)                 {                     PointLabel.at<uchar>(i, j) = 3;//将背景黑色点标记为合格,像素为3                 }             }         }     }     else//去除孔洞,黑色点像素     {         //cout << "去除孔洞";         for (int i = 0; i < Src.rows; i++)         {             for (int j = 0; j < Src.cols; j++)             {                 if (Src.at<uchar>(i, j) > 10)                 {                     PointLabel.at<uchar>(i, j) = 3;//如果原图是白色区域,标记为合格,像素为3                 }             }         }     }     vector<Point2i>NeihborPos;//将邻域压进容器     NeihborPos.push_back(Point2i(-1, 0));     NeihborPos.push_back(Point2i(1, 0));     NeihborPos.push_back(Point2i(0, -1));     NeihborPos.push_back(Point2i(0, 1));     if (NeihborMode == 1)     {         //cout << "Neighbor mode: 8邻域." << endl;         NeihborPos.push_back(Point2i(-1, -1));         NeihborPos.push_back(Point2i(-1, 1));         NeihborPos.push_back(Point2i(1, -1));         NeihborPos.push_back(Point2i(1, 1));     }     else int a = 0;//cout << "Neighbor mode: 4邻域." << endl;     int NeihborCount = 4 + 4 * NeihborMode;     int CurrX = 0, CurrY = 0;     //开始检测     for (int i = 0; i < Src.rows; i++)     {         for (int j = 0; j < Src.cols; j++)         {             if (PointLabel.at<uchar>(i, j) == 0)//标签图像像素点为0,表示还未检查的不合格点             { //开始检查                 vector<Point2i>GrowBuffer;//记录检查像素点的个数                 GrowBuffer.push_back(Point2i(j, i));                 PointLabel.at<uchar>(i, j) = 1;//标记为正在检查                 int CheckResult = 0;                 for (int z = 0; z < GrowBuffer.size(); z++)                 {                     for (int q = 0; q < NeihborCount; q++)                     {                         CurrX = GrowBuffer.at(z).x + NeihborPos.at(q).x;                         CurrY = GrowBuffer.at(z).y + NeihborPos.at(q).y;                         if (CurrX >= 0 && CurrX<Src.cols&&CurrY >= 0 && CurrY<Src.rows) //防止越界                         {                             if (PointLabel.at<uchar>(CurrY, CurrX) == 0)                             {                                 GrowBuffer.push_back(Point2i(CurrX, CurrY)); //邻域点加入buffer                                 PointLabel.at<uchar>(CurrY, CurrX) = 1;   //更新邻域点的检查标签,避免重复检查                             }                         }                     }                 }                 if (GrowBuffer.size()>AreaLimit) //判断结果(是否超出限定的大小),1为未超出,2为超出                     CheckResult = 2;                 else                 {                     CheckResult = 1;                     RemoveCount++;//记录有多少区域被去除                 }                 for (int z = 0; z < GrowBuffer.size(); z++)                 {                     CurrX = GrowBuffer.at(z).x;                     CurrY = GrowBuffer.at(z).y;                     PointLabel.at<uchar>(CurrY, CurrX) += CheckResult;//标记不合格的像素点,像素值为2                 }                 //********结束该点处的检查**********             }         }     }     CheckMode = 255 * (1 - CheckMode);     //开始反转面积过小的区域     for (int i = 0; i < Src.rows; ++i)     {         for (int j = 0; j < Src.cols; ++j)         {             if (PointLabel.at<uchar>(i, j) == 2)             {                 Dst.at<uchar>(i, j) = CheckMode;             }             else if (PointLabel.at<uchar>(i, j) == 3)             {                 Dst.at<uchar>(i, j) = Src.at<uchar>(i, j);             }         }     }     //cout << RemoveCount << " objects removed." << endl; } //=======函数实现===================================================================== //=======调用函数=====================================================================     Mat img;     img = imread("D:1_1.jpg", 0);//读取图片     threshold(img, img, 128, 255, CV_THRESH_BINARY_INV);     imshow("去除前", img);     Mat img1;     RemoveSmallRegion(img, img, 200, 0, 1);     imshow("去除后", img);     waitKey(0); //=======调用函数=====================================================================

以上这篇使用OpenCV去除面积较小的连通域就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。

原文链接:https://blog.csdn.net/sxlsxl119/article/details/80493655