各位用户为了找寻关于python中常用的九种预处理方法分享的资料费劲了很多周折。这里教程网为您整理了关于python中常用的九种预处理方法分享的相关资料,仅供查阅,以下为您介绍关于python中常用的九种预处理方法分享的详细内容
本文总结的是我们大家在python中常见的数据预处理方法,以下通过sklearn的preprocessing模块来介绍;
1. 标准化(Standardization or Mean Removal and Variance Scaling)
变换后各维特征有0均值,单位方差。也叫z-score规范化(零均值规范化)。计算方式是将特征值减去均值,除以标准差。
? 1sklearn.preprocessing.scale(X)
一般会把train和test集放在一起做标准化,或者在train集上做标准化后,用同样的标准化器去标准化test集,此时可以用scaler
? 1 2 3scaler
=
sklearn.preprocessing.StandardScaler().fit(train)
scaler.transform(train)
scaler.transform(test)
实际应用中,需要做特征标准化的常见情景:SVM
2. 最小-最大规范化
最小-最大规范化对原始数据进行线性变换,变换到[0,1]区间(也可以是其他固定最小最大值的区间)
? 1 2min_max_scaler
=
sklearn.preprocessing.MinMaxScaler()
min_max_scaler.fit_transform(X_train)
3.规范化(Normalization)
规范化是将不同变化范围的值映射到相同的固定范围,常见的是[0,1],此时也称为归一化。
将每个样本变换成unit norm。
? 1 2X
=
[[
1
,
-
1
,
2
],[
2
,
0
,
0
], [
0
,
1
,
-
1
]]
sklearn.preprocessing.normalize(X, norm
=
'l2'
)
得到:
? 1array([[
0.40
,
-
0.40
,
0.81
], [
1
,
0
,
0
], [
0
,
0.70
,
-
0.70
]])
可以发现对于每一个样本都有,0.4^2+0.4^2+0.81^2=1,这就是L2 norm,变换后每个样本的各维特征的平方和为1。类似地,L1 norm则是变换后每个样本的各维特征的绝对值和为1。还有max norm,则是将每个样本的各维特征除以该样本各维特征的最大值。 在度量样本之间相似性时,如果使用的是二次型kernel,需要做Normalization
4. 特征二值化(Binarization)
给定阈值,将特征转换为0/1
? 1 2binarizer
=
sklearn.preprocessing.Binarizer(threshold
=
1.1
)
binarizer.transform(X)
5. 标签二值化(Label binarization)
? 1lb
=
sklearn.preprocessing.LabelBinarizer()
6. 类别特征编码
有时候特征是类别型的,而一些算法的输入必须是数值型,此时需要对其编码。
? 1 2 3enc
=
preprocessing.OneHotEncoder()
enc.fit([[
0
,
0
,
3
], [
1
,
1
,
0
], [
0
,
2
,
1
], [
1
,
0
,
2
]])
enc.transform([[
0
,
1
,
3
]]).toarray()
#array([[ 1., 0., 0., 1., 0., 0., 0., 0., 1.]])
上面这个例子,第一维特征有两种值0和1,用两位去编码。第二维用三位,第三维用四位。
另一种编码方式
? 1newdf
=
pd.get_dummies(df,columns
=
[
"gender"
,
"title"
],dummy_na
=
True
)
7.标签编码(Label encoding)
? 1 2 3 4 5 6le
=
sklearn.preprocessing.LabelEncoder()
le.fit([
1
,
2
,
2
,
6
])
le.transform([
1
,
1
,
2
,
6
])
#array([0, 0, 1, 2])
#非数值型转化为数值型
le.fit([
"paris"
,
"paris"
,
"tokyo"
,
"amsterdam"
])
le.transform([
"tokyo"
,
"tokyo"
,
"paris"
])
#array([2, 2, 1])
8.特征中含异常值时
? 1sklearn.preprocessing.robust_scale
9.生成多项式特征
这个其实涉及到特征工程了,多项式特征/交叉特征。
? 1 2poly
=
sklearn.preprocessing.PolynomialFeatures(
2
)
poly.fit_transform(X)
原始特征:
转化后:
总结
以上就是为大家总结的python中常用的九种预处理方法分享,希望这篇文章对大家学习或者使用python能有一定的帮助,如果有疑问大家可以留言交流。