各位用户为了找寻关于python实现人工蜂群算法的资料费劲了很多周折。这里教程网为您整理了关于python实现人工蜂群算法的相关资料,仅供查阅,以下为您介绍关于python实现人工蜂群算法的详细内容

ABSIndividual.py

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 import numpy as np import ObjFunction     class ABSIndividual:     '''   individual of artificial bee swarm algorithm   '''     def __init__(self, vardim, bound):     '''     vardim: dimension of variables     bound: boundaries of variables     '''     self.vardim = vardim     self.bound = bound     self.fitness = 0.     self.trials = 0     def generate(self):     '''     generate a random chromsome for artificial bee swarm algorithm     '''     len = self.vardim     rnd = np.random.random(size=len)     self.chrom = np.zeros(len)     for i in xrange(0, len):       self.chrom[i] = self.bound[0, i] +         (self.bound[1, i] - self.bound[0, i]) * rnd[i]     def calculateFitness(self):     '''     calculate the fitness of the chromsome     '''     self.fitness = ObjFunction.GrieFunc(       self.vardim, self.chrom, self.bound)

ABS.py

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 import numpy as np from ABSIndividual import ABSIndividual import random import copy import matplotlib.pyplot as plt     class ArtificialBeeSwarm:     '''   the class for artificial bee swarm algorithm   '''     def __init__(self, sizepop, vardim, bound, MAXGEN, params):     '''     sizepop: population sizepop     vardim: dimension of variables     bound: boundaries of variables     MAXGEN: termination condition     params: algorithm required parameters, it is a list which is consisting of[trailLimit, C]     '''     self.sizepop = sizepop     self.vardim = vardim     self.bound = bound     self.foodSource = self.sizepop / 2     self.MAXGEN = MAXGEN     self.params = params     self.population = []     self.fitness = np.zeros((self.sizepop, 1))     self.trace = np.zeros((self.MAXGEN, 2))     def initialize(self):     '''     initialize the population of abs     '''     for i in xrange(0, self.foodSource):       ind = ABSIndividual(self.vardim, self.bound)       ind.generate()       self.population.append(ind)     def evaluation(self):     '''     evaluation the fitness of the population     '''     for i in xrange(0, self.foodSource):       self.population[i].calculateFitness()       self.fitness[i] = self.population[i].fitness     def employedBeePhase(self):     '''     employed bee phase     '''     for i in xrange(0, self.foodSource):       k = np.random.random_integers(0, self.vardim - 1)       j = np.random.random_integers(0, self.foodSource - 1)       while j == i:         j = np.random.random_integers(0, self.foodSource - 1)       vi = copy.deepcopy(self.population[i])       # vi.chrom = vi.chrom + np.random.uniform(-1, 1, self.vardim) * (       #   vi.chrom - self.population[j].chrom) + np.random.uniform(0.0, self.params[1], self.vardim) * (self.best.chrom - vi.chrom)       # for k in xrange(0, self.vardim):       #   if vi.chrom[k] < self.bound[0, k]:       #     vi.chrom[k] = self.bound[0, k]       #   if vi.chrom[k] > self.bound[1, k]:       #     vi.chrom[k] = self.bound[1, k]       vi.chrom[         k] += np.random.uniform(low=-1, high=1.0, size=1) * (vi.chrom[k] - self.population[j].chrom[k])       if vi.chrom[k] < self.bound[0, k]:         vi.chrom[k] = self.bound[0, k]       if vi.chrom[k] > self.bound[1, k]:         vi.chrom[k] = self.bound[1, k]       vi.calculateFitness()       if vi.fitness > self.fitness[fi]:         self.population[fi] = vi         self.fitness[fi] = vi.fitness         if vi.fitness > self.best.fitness:           self.best = vi       vi.calculateFitness()       if vi.fitness > self.fitness[i]:         self.population[i] = vi         self.fitness[i] = vi.fitness         if vi.fitness > self.best.fitness:           self.best = vi       else:         self.population[i].trials += 1     def onlookerBeePhase(self):     '''     onlooker bee phase     '''     accuFitness = np.zeros((self.foodSource, 1))     maxFitness = np.max(self.fitness)       for i in xrange(0, self.foodSource):       accuFitness[i] = 0.9 * self.fitness[i] / maxFitness + 0.1       for i in xrange(0, self.foodSource):       for fi in xrange(0, self.foodSource):         r = random.random()         if r < accuFitness[i]:           k = np.random.random_integers(0, self.vardim - 1)           j = np.random.random_integers(0, self.foodSource - 1)           while j == fi:             j = np.random.random_integers(0, self.foodSource - 1)           vi = copy.deepcopy(self.population[fi])           # vi.chrom = vi.chrom + np.random.uniform(-1, 1, self.vardim) * (           #   vi.chrom - self.population[j].chrom) + np.random.uniform(0.0, self.params[1], self.vardim) * (self.best.chrom - vi.chrom)           # for k in xrange(0, self.vardim):           #   if vi.chrom[k] < self.bound[0, k]:           #     vi.chrom[k] = self.bound[0, k]           #   if vi.chrom[k] > self.bound[1, k]:           #     vi.chrom[k] = self.bound[1, k]           vi.chrom[             k] += np.random.uniform(low=-1, high=1.0, size=1) * (vi.chrom[k] - self.population[j].chrom[k])           if vi.chrom[k] < self.bound[0, k]:             vi.chrom[k] = self.bound[0, k]           if vi.chrom[k] > self.bound[1, k]:             vi.chrom[k] = self.bound[1, k]           vi.calculateFitness()           if vi.fitness > self.fitness[fi]:             self.population[fi] = vi             self.fitness[fi] = vi.fitness             if vi.fitness > self.best.fitness:               self.best = vi           else:             self.population[fi].trials += 1           break     def scoutBeePhase(self):     '''     scout bee phase     '''     for i in xrange(0, self.foodSource):       if self.population[i].trials > self.params[0]:         self.population[i].generate()         self.population[i].trials = 0         self.population[i].calculateFitness()         self.fitness[i] = self.population[i].fitness     def solve(self):     '''     the evolution process of the abs algorithm     '''     self.t = 0     self.initialize()     self.evaluation()     best = np.max(self.fitness)     bestIndex = np.argmax(self.fitness)     self.best = copy.deepcopy(self.population[bestIndex])     self.avefitness = np.mean(self.fitness)     self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness     self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness     print("Generation %d: optimal function value is: %f; average function value is %f" % (       self.t, self.trace[self.t, 0], self.trace[self.t, 1]))     while self.t < self.MAXGEN - 1:       self.t += 1       self.employedBeePhase()       self.onlookerBeePhase()       self.scoutBeePhase()       best = np.max(self.fitness)       bestIndex = np.argmax(self.fitness)       if best > self.best.fitness:         self.best = copy.deepcopy(self.population[bestIndex])       self.avefitness = np.mean(self.fitness)       self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness       self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness       print("Generation %d: optimal function value is: %f; average function value is %f" % (         self.t, self.trace[self.t, 0], self.trace[self.t, 1]))     print("Optimal function value is: %f; " % self.trace[self.t, 0])     print "Optimal solution is:"     print self.best.chrom     self.printResult()     def printResult(self):     '''     plot the result of abs algorithm     '''     x = np.arange(0, self.MAXGEN)     y1 = self.trace[:, 0]     y2 = self.trace[:, 1]     plt.plot(x, y1, 'r', label='optimal value')     plt.plot(x, y2, 'g', label='average value')     plt.xlabel("Iteration")     plt.ylabel("function value")     plt.title("Artificial Bee Swarm algorithm for function optimization")     plt.legend()     plt.show()

运行程序:

? 1 2 3 4 5 if __name__ == "__main__":     bound = np.tile([[-600], [600]], 25)   abs = ABS(60, 25, bound, 1000, [100, 0.5])   abs.solve()

ObjFunction见简单遗传算法-python实现。

以上就是python实现人工蜂群算法的详细内容,更多关于python 人工蜂群算法的资料请关注服务器之家其它相关文章!

原文链接:https://www.cnblogs.com/biaoyu/p/4857904.html