各位用户为了找寻关于python实现简单遗传算法的资料费劲了很多周折。这里教程网为您整理了关于python实现简单遗传算法的相关资料,仅供查阅,以下为您介绍关于python实现简单遗传算法的详细内容
ObjFunction.py
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25import
math
def
GrieFunc(vardim, x, bound):
"""
Griewangk function
"""
s1
=
0.
s2
=
1.
for
i
in
range
(
1
, vardim
+
1
):
s1
=
s1
+
x[i
-
1
]
*
*
2
s2
=
s2
*
math.cos(x[i
-
1
]
/
math.sqrt(i))
y
=
(
1.
/
4000.
)
*
s1
-
s2
+
1
y
=
1.
/
(
1.
+
y)
return
y
def
RastFunc(vardim, x, bound):
"""
Rastrigin function
"""
s
=
10
*
25
for
i
in
range
(
1
, vardim
+
1
):
s
=
s
+
x[i
-
1
]
*
*
2
-
10
*
math.cos(
2
*
math.pi
*
x[i
-
1
])
return
s
GAIndividual.py
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36import
numpy as np
import
ObjFunction
class
GAIndividual:
'''
individual of genetic algorithm
'''
def
__init__(
self
, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self
.vardim
=
vardim
self
.bound
=
bound
self
.fitness
=
0.
def
generate(
self
):
'''
generate a random chromsome for genetic algorithm
'''
len
=
self
.vardim
rnd
=
np.random.random(size
=
len
)
self
.chrom
=
np.zeros(
len
)
for
i
in
xrange
(
0
,
len
):
self
.chrom[i]
=
self
.bound[
0
, i]
+
(
self
.bound[
1
, i]
-
self
.bound[
0
, i])
*
rnd[i]
def
calculateFitness(
self
):
'''
calculate the fitness of the chromsome
'''
self
.fitness
=
ObjFunction.GrieFunc(
self
.vardim,
self
.chrom,
self
.bound)
GeneticAlgorithm.py
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165import
numpy as np
from
GAIndividual
import
GAIndividual
import
random
import
copy
import
matplotlib.pyplot as plt
class
GeneticAlgorithm:
'''
The class for genetic algorithm
'''
def
__init__(
self
, sizepop, vardim, bound, MAXGEN, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
MAXGEN: termination condition
param: algorithm required parameters, it is a list which is consisting of crossover rate, mutation rate, alpha
'''
self
.sizepop
=
sizepop
self
.MAXGEN
=
MAXGEN
self
.vardim
=
vardim
self
.bound
=
bound
self
.population
=
[]
self
.fitness
=
np.zeros((
self
.sizepop,
1
))
self
.trace
=
np.zeros((
self
.MAXGEN,
2
))
self
.params
=
params
def
initialize(
self
):
'''
initialize the population
'''
for
i
in
xrange
(
0
,
self
.sizepop):
ind
=
GAIndividual(
self
.vardim,
self
.bound)
ind.generate()
self
.population.append(ind)
def
evaluate(
self
):
'''
evaluation of the population fitnesses
'''
for
i
in
xrange
(
0
,
self
.sizepop):
self
.population[i].calculateFitness()
self
.fitness[i]
=
self
.population[i].fitness
def
solve(
self
):
'''
evolution process of genetic algorithm
'''
self
.t
=
0
self
.initialize()
self
.evaluate()
best
=
np.
max
(
self
.fitness)
bestIndex
=
np.argmax(
self
.fitness)
self
.best
=
copy.deepcopy(
self
.population[bestIndex])
self
.avefitness
=
np.mean(
self
.fitness)
self
.trace[
self
.t,
0
]
=
(
1
-
self
.best.fitness)
/
self
.best.fitness
self
.trace[
self
.t,
1
]
=
(
1
-
self
.avefitness)
/
self
.avefitness
print
(
"Generation %d: optimal function value is: %f; average function value is %f"
%
(
self
.t,
self
.trace[
self
.t,
0
],
self
.trace[
self
.t,
1
]))
while
(
self
.t <
self
.MAXGEN
-
1
):
self
.t
+
=
1
self
.selectionOperation()
self
.crossoverOperation()
self
.mutationOperation()
self
.evaluate()
best
=
np.
max
(
self
.fitness)
bestIndex
=
np.argmax(
self
.fitness)
if
best >
self
.best.fitness:
self
.best
=
copy.deepcopy(
self
.population[bestIndex])
self
.avefitness
=
np.mean(
self
.fitness)
self
.trace[
self
.t,
0
]
=
(
1
-
self
.best.fitness)
/
self
.best.fitness
self
.trace[
self
.t,
1
]
=
(
1
-
self
.avefitness)
/
self
.avefitness
print
(
"Generation %d: optimal function value is: %f; average function value is %f"
%
(
self
.t,
self
.trace[
self
.t,
0
],
self
.trace[
self
.t,
1
]))
print
(
"Optimal function value is: %f; "
%
self
.trace[
self
.t,
0
])
print
"Optimal solution is:"
print
self
.best.chrom
self
.printResult()
def
selectionOperation(
self
):
'''
selection operation for Genetic Algorithm
'''
newpop
=
[]
totalFitness
=
np.
sum
(
self
.fitness)
accuFitness
=
np.zeros((
self
.sizepop,
1
))
sum1
=
0.
for
i
in
xrange
(
0
,
self
.sizepop):
accuFitness[i]
=
sum1
+
self
.fitness[i]
/
totalFitness
sum1
=
accuFitness[i]
for
i
in
xrange
(
0
,
self
.sizepop):
r
=
random.random()
idx
=
0
for
j
in
xrange
(
0
,
self
.sizepop
-
1
):
if
j
=
=
0
and
r < accuFitness[j]:
idx
=
0
break
elif
r >
=
accuFitness[j]
and
r < accuFitness[j
+
1
]:
idx
=
j
+
1
break
newpop.append(
self
.population[idx])
self
.population
=
newpop
def
crossoverOperation(
self
):
'''
crossover operation for genetic algorithm
'''
newpop
=
[]
for
i
in
xrange
(
0
,
self
.sizepop,
2
):
idx1
=
random.randint(
0
,
self
.sizepop
-
1
)
idx2
=
random.randint(
0
,
self
.sizepop
-
1
)
while
idx2
=
=
idx1:
idx2
=
random.randint(
0
,
self
.sizepop
-
1
)
newpop.append(copy.deepcopy(
self
.population[idx1]))
newpop.append(copy.deepcopy(
self
.population[idx2]))
r
=
random.random()
if
r <
self
.params[
0
]:
crossPos
=
random.randint(
1
,
self
.vardim
-
1
)
for
j
in
xrange
(crossPos,
self
.vardim):
newpop[i].chrom[j]
=
newpop[i].chrom[
j]
*
self
.params[
2
]
+
(
1
-
self
.params[
2
])
*
newpop[i
+
1
].chrom[j]
newpop[i
+
1
].chrom[j]
=
newpop[i
+
1
].chrom[j]
*
self
.params[
2
]
+
(
1
-
self
.params[
2
])
*
newpop[i].chrom[j]
self
.population
=
newpop
def
mutationOperation(
self
):
'''
mutation operation for genetic algorithm
'''
newpop
=
[]
for
i
in
xrange
(
0
,
self
.sizepop):
newpop.append(copy.deepcopy(
self
.population[i]))
r
=
random.random()
if
r <
self
.params[
1
]:
mutatePos
=
random.randint(
0
,
self
.vardim
-
1
)
theta
=
random.random()
if
theta >
0.5
:
newpop[i].chrom[mutatePos]
=
newpop[i].chrom[
mutatePos]
-
(newpop[i].chrom[mutatePos]
-
self
.bound[
0
, mutatePos])
*
(
1
-
random.random()
*
*
(
1
-
self
.t
/
self
.MAXGEN))
else
:
newpop[i].chrom[mutatePos]
=
newpop[i].chrom[
mutatePos]
+
(
self
.bound[
1
, mutatePos]
-
newpop[i].chrom[mutatePos])
*
(
1
-
random.random()
*
*
(
1
-
self
.t
/
self
.MAXGEN))
self
.population
=
newpop
def
printResult(
self
):
'''
plot the result of the genetic algorithm
'''
x
=
np.arange(
0
,
self
.MAXGEN)
y1
=
self
.trace[:,
0
]
y2
=
self
.trace[:,
1
]
plt.plot(x, y1,
'r'
, label
=
'optimal value'
)
plt.plot(x, y2,
'g'
, label
=
'average value'
)
plt.xlabel(
"Iteration"
)
plt.ylabel(
"function value"
)
plt.title(
"Genetic algorithm for function optimization"
)
plt.legend()
plt.show()
运行程序:
? 1 2 3 4 5if
__name__
=
=
"__main__"
:
bound
=
np.tile([[
-
600
], [
600
]],
25
)
ga
=
GA(
60
,
25
, bound,
1000
, [
0.9
,
0.1
,
0.5
])
ga.solve()
作者:Alex Yu 出处:http://www.cnblogs.com/biaoyu/
以上就是python实现简单遗传算法的详细内容,更多关于python 遗传算法的资料请关注服务器之家其它相关文章!
原文链接:https://www.cnblogs.com/biaoyu/p/4857881.html