各位用户为了找寻关于postgresql无序uuid性能测试及对数据库的影响的资料费劲了很多周折。这里教程网为您整理了关于postgresql无序uuid性能测试及对数据库的影响的相关资料,仅供查阅,以下为您介绍关于postgresql无序uuid性能测试及对数据库的影响的详细内容

无序uuid对数据库的影响

由于最近在做超大表的性能测试,在该过程中发现了无序uuid做主键对表插入性能有一定影响。结合实际情况发现当表的数据量越大,对表插入性能的影响也就越大。

测试环境

PostgreSQL创建插入脚本,测试各种情况的tps。

数据库版本:PostgreSQL 10.4 (ArteryBase 5.0.0, Thunisoft)

操作系统配置:CentOS Linux release 7 ,32GB内存,8 cpu

测试参数:pgbench -M prepared -r -n -j 8 -c 8 -T 60 -f /opt/thunisoft/pgbench_uuid_v4.sql -U sa pgbenchdb

空表,1000w数据,5000w数据,一亿数据的各种主键测试。

测试无序的uuid,有序的uuid,序列,有普通btree,有唯一索引和没有主键的情况

测试

1.创建表

? 1 2 3 4 5 6 7 8 9 10 11 --无序的uuid pgbenchdb=# create table test_uuid_v4(id char(32) primary key); CREATE TABLE --有序的uuid pgbenchdb=# create table test_time_nextval(id char(32) primary key); CREATE TABLE --递增序列 pgbenchdb=# create table test_seq_bigint(id int8 primary key); CREATE TABLE --创建序列  create sequence test_seq start with 1 ;

2.测试脚本

? 1 2 3 4 5 6 7 8 9 --测试无序uuid脚本 vi pgbench_uuid_v4.sql insert into test_uuid_v4 (id) values (replace(uuid_generate_v4()::text,'-','')); --测试有序uuid脚本 vi pgbench_time_nextval.sql insert into test_time_nextval (id) values (replace(uuid_time_nextval()::text,'-','')); --测试序列脚本 vi pgbench_seq_bigint.sql insert into test_seq_bigint (id) values (nextval('test_seq'::regclass));

无序uuid,无数据情况

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 磁盘使用情况 avg-cpu:  %user   %nice %system %iowait  %steal   %idle            0.76    0.00    0.38    4.67    0.00   94.19   Device:         rrqm/s   wrqm/s     r/s     w/s    rkB/s    wkB/s avgrq-sz avgqu-sz   await r_await w_await  svctm  %util sdb               0.00     0.00    0.00    0.00     0.00     0.00     0.00     0.00    0.00    0.00    0.00   0.00   0.00 sda               0.00     0.00    0.00   96.00     0.00  2048.00    42.67     1.02   10.67    0.00   10.67  10.33  99.20 dm-0              0.00     0.00    0.00   96.00     0.00  2048.00    42.67     1.02   10.66    0.00   10.66  10.32  99.10 dm-1              0.00     0.00    0.00    0.00     0.00     0.00     0.00     0.00    0.00    0.00    0.00   0.00   0.00 dm-2              0.00     0.00    0.00    0.00     0.00     0.00     0.00     0.00    0.00    0.00    0.00   0.00   0.00   tps: [thunisoft@localhost thunisoft]$ pgbench -M prepared -r -n -j 8 -c 8 -T 60 -f /opt/thunisoft/pgbench_uuid_v4.sql -U sa pgbenchdb transaction type: /opt/thunisoft/pgbench_uuid_v4.sql scaling factor: 1 query mode: prepared number of clients: 8 number of threads: 8 duration: 60 s number of transactions actually processed: 53494 latency average = 8.974 ms tps = 891.495404 (including connections establishing) tps = 891.588967 (excluding connections establishing) script statistics:  - statement latencies in milliseconds:          9.006  insert into test_uuid_v4 (id) values (replace(uuid_generate_v4()::text,'-',''));

无数据情况下,tps

? 1 2 3 4 5 类别     |  第一次  | 第二次  | 第三次 | 平均值(tps) |%util |await ---------------+---------+---------+---------+---------+-------+-------  无序uuid       | 919     | 907     |  891  |   906     | 99.2% | 10.66    有序uuid       | 985     | 882     |  932  |   933     | 98.7% | 4.4  序列           | 1311     | 1277    |  1280 |  1289     | 97.5% | 3.4

向表里面初始化100w数据

? 1 2 3 4 5 6 7 8 9 10 pgbenchdb=# insert into test_uuid_v4 (id) select  replace(uuid_generate_v4()::text,'-','') from generate_series(1,1000000); INSERT 0 1000000 Time: 43389.817 ms (00:43.390) pgbenchdb=# insert into test_time_nextval (id) select replace(uuid_time_nextval()::text,'-','') from generate_series(1,1000000); INSERT 0 1000000 Time: 30585.134 ms (00:30.585) pgbenchdb=#  insert into test_seq_bigint select generate_series (1,1000000); INSERT 0 1000000 Time: 9818.639 ms (00:09.819) 无序uuid插入100w需要43s,有序需要30s,序列需要10s。

插入一百万数据后的tps

? 1 2 3 4 5 类别     |  第一次  | 第二次  | 第三次 | 平均值(tps) |%util |await ---------------+---------+---------+---------+---------+-------+-------  无序uuid       | 355     | 440     |  302  |   365     | 98.8% | 13    有序uuid       | 948     | 964     |  870  |   927     | 97.2% | 4.0  序列           | 1159     | 1234    |  1115 |  1169     | 96.6% | 3.5

插入一千万数据后的tps

? 1 2 3 4 5 类别     |  第一次  | 第二次  | 第三次 | 平均值(tps) |%util |await ---------------+---------+---------+---------+---------+-------+-------  无序uuid       | 260     | 292     |  227  |   260     | 99.2% | 16.8    有序uuid       | 817     | 960     |  883  |   870     | 97.7% | 3.9  序列            | 1305     | 1261    |  1270 |  1278     | 96.8% | 3.0

插入五千万数据后

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 向表中插入5kw数据,并且添加主键 pgbenchdb=# insert into test_time_nextval (id) select replace(uuid_time_nextval()::text,'-','') from generate_series(1,50000000); INSERT 0 50000000 Time: 453985.318 ms (07:33.985) pgbenchdb=# insert into test_seq_bigint select generate_series (1,50000000); INSERT 0 50000000 Time: 352206.160 ms (05:52.206) pgbenchdb=# insert into test_uuid_v4 (id) select  replace(uuid_generate_v4()::text,'-','') from generate_series(1,50000000); INSERT 0 50000000 Time: 1159689.338 ms (00:19:19.689)   在无主键情况下,插入五千万数据,有序uuid耗时7分钟,序列耗时6分钟,而无序uuid耗时接近20分钟。   pgbenchdb=# alter table test_uuid_v4 add primary key ("id"); ALTER TABLE Time: 845199.296 ms (14:05.199) pgbenchdb=# alter table test_time_nextval add primary key ("id"); ALTER TABLE Time: 932151.103 ms (15:32.151) pgbenchdb=# alter table test_seq_bigint add primary key ("id"); ALTER TABLE Time: 148138.871 ms (02:28.139)   pgbenchdb=# select pg_size_pretty(pg_total_relation_size('test_uuid_v4'));  pg_size_pretty ----------------  6072 MB (1 row)   Time: 0.861 ms pgbenchdb=#  select pg_size_pretty(pg_total_relation_size('test_time_nextval'));  pg_size_pretty ----------------  6072 MB (1 row)   Time: 0.942 ms pgbenchdb=#  select pg_size_pretty(pg_total_relation_size('test_seq_bigint'));  pg_size_pretty ----------------  2800 MB (1 row)   Time: 0.699 ms

插入5kw后

? 1 2 3 4 5 类别     |  第一次  | 第二次  | 第三次 | 平均值(tps) |%util |await ---------------+---------+---------+---------+---------+-------+-------  无序uuid       | 162     | 163     |  163  |   163     | 99.6% | 18.4    有序uuid       | 738     | 933     |  979  |   883     | 97.7% | 3.9  序列              | 1132     | 1264    |  1265 |  1220     | 96.8% | 3.5

插入1亿条数据后

? 1 2 3 4 5   类别     |  第一次  | 第二次  | 第三次 | 平均值(tps) |%util |await ---------------+---------+---------+---------+---------+-------+-------  无序uuid       | 121     | 131     |  143  |   131     | 99.6% | 28.2    有序uuid       | 819     | 795     |  888  |   834     | 99.2% | 28.7  序列             | 1193     | 1115    |  1109 |  1139     | 96.8% | 11.3

普通btree索引

上面测了无序uuid,1kw情况下,有主键的tps是260,无主键的tps是1234。尝试测试普通的索引,和唯一索引tps

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 --创建普通索引 pgbenchdb=# create index i_test_uuid_v4_id on test_uuid_v4(id); CREATE INDEX Time: 316367.010 ms (05:16.367) --创建普通索引后 [thunisoft@localhost thunisoft]$ pgbench -M prepared -r -n -j 8 -c 8 -T 60 -f /opt/thunisoft/pgbench_uuid_v4.sql -U sa pgbenchdb transaction type: /opt/thunisoft/pgbench_uuid_v4.sql scaling factor: 1 query mode: prepared number of clients: 8 number of threads: 8 duration: 60 s number of transactions actually processed: 13308 latency average = 36.080 ms tps = 221.727391 (including connections establishing) tps = 221.749660 (excluding connections establishing) script statistics:  - statement latencies in milliseconds:         38.512  insert into test_uuid_v4 (id) values (replace(uuid_generate_v4()::text,'-','')); --创建唯一索引 pgbenchdb=# drop index i_test_uuid_v4_id; DROP INDEX Time: 267.451 ms pgbenchdb=# create unique index i_test_uuid_v4_id on test_uuid_v4(id); CREATE INDEX Time: 153372.622 ms (02:33.373) [thunisoft@localhost thunisoft]$ pgbench -M prepared -r -n -j 8 -c 8 -T 60 -f /opt/thunisoft/pgbench_uuid_v4.sql -U sa pgbenchdb ^[[3~transaction type: /opt/thunisoft/pgbench_uuid_v4.sql scaling factor: 1 query mode: prepared number of clients: 8 number of threads: 8 duration: 60 s number of transactions actually processed: 13847 latency average = 34.693 ms tps = 230.593988 (including connections establishing) tps = 230.620469 (excluding connections establishing) script statistics:  - statement latencies in milliseconds:         36.410  insert into test_uuid_v4 (id) values (replace(uuid_generate_v4()::text,'-',''));

无论是普通btree索引和唯一索引,都会影响插入的效率。

删除所有的主键索引

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 --删除所有主键 alter table test_uuid_v4 drop constraint "test_uuid_v4_pkey"; alter table test_time_nextval drop constraint "test_time_nextval_pkey" ; alter table test_seq_bigint drop constraint "test_seq_bigint_pkey";   1,--无序uuid:测试pgbench_uuid_v4.sql [thunisoft@localhost thunisoft]$ pgbench -M prepared -r -n -j 8 -c 8 -T 60 -f /opt/thunisoft/pgbench_uuid_v4.sql -U sa pgbenchdb transaction type: /opt/thunisoft/pgbench_uuid_v4.sql scaling factor: 1 query mode: prepared number of clients: 8 number of threads: 8 duration: 60 s number of transactions actually processed: 74109 latency average = 6.479 ms tps = 1234.842229 (including connections establishing) tps = 1235.042674 (excluding connections establishing) script statistics:  - statement latencies in milliseconds:          6.112  insert into test_uuid_v4 (id) values (replace(uuid_generate_v4()::text,'-',''));   2、--有序uuid,测试pgbench_time_nextval.sql [thunisoft@localhost thunisoft]$ pgbench -M prepared -r -n -j 8 -c 8 -T 60 -f /opt/thunisoft/pgbench_time_nextval.sql -U sa pgbenchdb transaction type: /opt/thunisoft/pgbench_time_nextval.sql scaling factor: 1 query mode: prepared number of clients: 8 number of threads: 8 duration: 60 s number of transactions actually processed: 74027 latency average = 6.486 ms tps = 1233.364360 (including connections establishing) tps = 1233.482292 (excluding connections establishing) script statistics:  - statement latencies in milliseconds:          6.186  insert into test_time_nextval (id) values (replace(uuid_time_nextval()::text,'-','')); 3、--序列,测试pgbench_seq_bigint.sql [thunisoft@localhost thunisoft]$ pgbench -M prepared -r -n -j 8 -c 8 -T 60 -f /opt/thunisoft/pgbench_seq_bigint.sql -U sa pgbenchdb transaction type: /opt/thunisoft/pgbench_seq_bigint.sql scaling factor: 1 query mode: prepared number of clients: 8 number of threads: 8 duration: 60 s number of transactions actually processed: 76312 latency average = 6.290 ms tps = 1271.832907 (including connections establishing) tps = 1272.124397 (excluding connections establishing) script statistics:  - statement latencies in milliseconds:          5.916  insert into test_seq_bigint (id) values (nextval('test_seq'::regclass));

删除主键约束后,三种情况下tps非常接近,都达到了1200+。

Btree索引,插入操作的平均tps对比

? 1 2 3 4 5 类别/平均tps    |  无数据  | 一千万  | 五千万 | 一亿      | ---------------+---------+---------+---------+---------+  无序uuid       | 960     | 260     |  163  |   131     |  有序uuid       | 933     | 870     |  883  |   834     |  序列           | 1289     | 1278    |  1220 |  1139     |

根据测试数据可以看出无序的uuid在数据到达1kw后插入数据的tps下降的非常厉害,而有序的uuid和递增序列下降的比较少。到一亿数据的tps有序uuid是无序的6倍,序列是无序uuid的9倍。

创建单独的表空间用来存储索引信息

如果有多快磁盘那么可以将索引和数据分开存储,以此来加快写入的速度。

创建单独的索引空间:

create tablespace indx_test owner sa location '/home/tablespace/index_test';

指定索引存储目录:

create index i_test_uuid_v4_id on test_uuid_v4 using btree(id) tablespace indx_test;

关于有序uuid

测试使用的sequential-uuids插件,生成的有序uuid。

有序uuid的结构为(block ID; random data),实际上就是把数据拆成两部分,一部分自增,一部分随机。

sequential-uuids

sequential-uuids-git

提供了两种算法:

1.uuid_sequence_nextval(sequence regclass, block_size int default 65536, block_count int default 65536)

前缀为自增序列,如果块ID使用2字节存储,一个索引BLOCK里面可以存储256条记录(假设8K的BLOCK,一条记录包括uuid VALUE(16字节)以及ctid(6字节),所以一个索引页约存储363条记录(8000 /(16 + 6)))

2.uuid_time_nextval(interval_length int default 60, interval_count int default 65536) RETURNS uuid

默认每60秒内的数据的前缀是一样的,前缀递增1,到65535后循环。

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 使用uuid_time_nextval生成的有序uuid pgbenchdb=# select id from test_time_nextval;                 id                ----------------------------------  a18b7dd0ca92b0b5c1844a402f9c6999  a18b540b8bbe0ddb2b6d0189b2e393c6  a18b83eb7320b0a90e625185421e065e  a18bade4ff15e05dab81ecd3f4c2dee4  a18b79e41c3bc8d2d4ba4b70447e6b29  a18bdad18d9e0d2fa1d9d675bc7129f0  a18b13723ec7be9a2f1a3aec5345a88b  a18bd9d866047aec69a064d30e9493d2  a18bd76e8c787c7464479502f381e6d7  a18ba5c0c966f81cfdbeff866618da8d ......

有序uuid前四位有序,后面的随机生成。

结语

1.关于有序的uuid,前4位是有序的,后面都是随机生成的。

2.在该环境中发现,无序uuid随着数据量的不断增大,tps下滑比较厉害。

3.由于btree索引的存在,无序的uuid会导致大量的离散io。导致磁盘使用率高。进而影响插入效率。随着表数据量的增大更加明显。

4.该测试是在普通的磁盘上面测试,并未在ssd上面测试。

5.如果要使用有序uuid,有多种实现方式,还需要考虑分布式情况下生成全局有序uuid。

以上就是postgresql无序uuid性能测试的详细内容,更多关于postgresql无序uuid性能测试的资料请关注其它相关文章!

原文链接:https://www.cnblogs.com/zhangfx01/p/14872356.html